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THE PROBLEM OF TURBULENT NATURAL CONVECTION AT A VERTICAL

IMPERMEABLE FLAT SURFACE
P. M. Brdlik
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An approximate solution is presented for the turbulent natural con-
vection which for a local coefficient of heat transfer yields a func-
tion of the form Nuy ~ (GrXPr)1 /3. The solution is in satisfactory
agreement with experimental data.

The overwhelming bulk of experimental data on
turbulent natural convection developing at an im-
permeable vertical surface leadstoarelationship be-
tween the heat-transfer coefficient and a Rayleigh
number of the form Nuy ~ Ra§(/3, i.e., to heat trans-
fer that is independent of the longitudinal coordinate
X.

The only theoretical solution of turbulent natural
convection, obtained by Eckert and Jackson [1], yields
‘a change in the local heat transfer from the Ray num-
ber according to the 0,4-law:

Nu, = 0.0295Ra04 __ PR , (1)
£ (14 0.494Pr¥3y0-4

which leads to noticeable divergence from experiment
{Fig. 1), increasing as the RaX number increases.

The cause of this great divergence in the theoreti-
cal solution [1] from experimental data is to be sought
in the incorrect utilization of the Blasius law, derived
for forced flow, for the tangential stress at a wall in
problems of natural convection.

The principal difference between natural and forced
convection is the significant effect on the development
of flow and heat transfer in mass (lift) forces, nottaken
into consideration by the Blasius formula. In the gen-
eral case the use of the Blasius friction law for solu-
tion of problems in turbulent natural convection is
therefore not cbvious.

We employed a somewhat different approach to the
analysis of the transfer of heat in turbulent natural
convection, developing about impermeable vertical
flat surfaces. Retaining the same expression as the
Blasius law (in terms of the form of notation) for the
tangential stress at the wall, we assume

k

) , (2)

» =Cpu}
K P‘(ula

where the exponent k and the constant C are found by
resort to experimental data on turbulent natural con-
vection.

Using the Reynolds analogy with a correction fac-
tor in the form of Pr—*/3 by means of which we take
into consideration the deviation of the analogy in
Prandtl numbers different from 1, we write the ex-
pression for the heat flow at the wall

5 k
Ju = Cgpcpul 8, (u—') Pr=253, (3)

16

The distribution of temperature and velocity in the
boundary layer is assumed on the basis of the "one-

seventh" law:
y 177
== ]— _—
o0, [1— ()] @

P, (i)""(l_~i)*, (5)

where u; is some unknown expressed in units of veloc-
ity. In the last expressionthe factor (1 — y/9) takes in-
to consideration the feature of natural convection that
velocity at the external edge of the boundary layer is
equal to zero.

Having substituted (2)—(5) into the integral relation-
ships of momentum

5 8
ij uzdy:gﬁjﬂdy—T—"’ (6)
dx o
0 0
and energy
8
-i j‘ ufdy = w , ()
dx goc,
0

we obtain the ordinary differential equations relating
u, and the thickness of the boundary layer 9:

k
0.0523 -4 (12 6) =0.125¢g 6,8 — Cu} ( ~ ) ,
dx b (8)

Uy

v )k pr_25,
]

1

0.0366 % (1, 8) = Cu, (
dx

System (8) can be solved by the substitutions

u, = Cpx™, (9)
8 = Cox, (10)

which yields

0.0523 (2m + n) CiCyx2m*n—1 =0.125g p6,, Cyx" —
. C 'Vk C?lakclbz me—k(m-l—n)

0.0366 (m 4 1) C,Cs xm+—1 =

(11)

—B Nk e,
= C Pr-23yk CRCyt ymBimtn)

For system (11) to be satisfied for any x, the ex-
ponents of x must be equal:

n+n—1=n=2m—k(m-+n), (12)
m+n—l=m—FEk(m+n). (13)

To find the exponents m, n, and k we thus have two
conditions, (12) and (13). As the third condition we
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may have that well~known experimental fact {2—11]
that in the case of turbulent natural convection at iso-
thermal vertical surfaces the flow of heat qy, at a wall
is constant and independent of x, With substitution of
(9) and (10) into (3) we have the condition

m—k(m-+ ny=20. (14)
The joint solution of (12)—(14) yields
m=n-=—FLk=12. (15)

Having introduced the values of m, n, and k into
{11) and solving the resulting equations relative to the
parametric constants Cy and Cg5, we have

V12
C, = 1.845y Pr-5/ (gﬁ# Pr) x
IV ;

/ Pr2é ) _
214+ pe '5",) ’ (16)
--16
Co= 7.4 C¥ (giew Pr) «
,V2
2:3 1,6 —1.6
x(-gﬁ;—f:r——> pr (17)
2

whence with consideration of (9) and (10) we find the
thickness of the boundary layer and the quantity u, :

§ =7.4C%"° (gﬁi” Pr)‘[/ﬁ x
v-

[ 2.14 + Pr¥®
of 222 T

= )pﬁ/ﬁxhﬂ, (18)
T2

/ 12
u, = 1.845v Pr-5% ( g B9, Pr) X
L v

2/3 1/2
of __Pr N e (19)
\ 2,14+ P25 )

The relative boundary-layer thickness 3/x and the
Reynolds number constructed from the maximum velo-
city of the boundary layer Re, .. = Uy 5%/ v, Where

Upax = 0.537uy, are defined by the formulas
2/3 —1/6
S L qaerare (P VT pras, (29
X 2.14-- Pr¥3

2/3 12
Remax=0_99Ra;/2( Pr ) Prss. (21)

2.14+ Pr2 |

Having substituted the heat flow gy from (3) into
the local Nusselt number Nuy = qyx/6 A, with con-
sideration of (18) and (19), we obtain

Ral/3 . (22)

2.144 Pr¥/3

The greatest number of experiments on turbulent
natural convection has been carried out with air, and
for the complex

x
2

o
S

. Pr#3 1/3
2/3
¢ ( 9.14+Pr2 ) (23)

oo
-3

these yield the following values: £ = 0. 135 (after Mi-
kheev [11]); 0.140 (after Kirpichev and Gukhman [6]);
0.148 (after Eigenson [4]); 0.109 (after Saunders [3]);
and 0.130 (after King [5]).

Assuming anaverage valueof £ = 0.13for Pr = 0. 72,
from (23) we find the constant C = 0.253. If we intro-
duce this into (22), (20), {2), and (3), we will finally
obtain

Nux = OQRa}\ 3 < Pr¥/3 )1/3 ,

2.14 - pr¥3

2/3 —1'6
L. 2.96Ra;"5 (»»L—J Pr-i:¢ (25)

X 2.14 4 Pr?/3
v 1,2
T, = 0.2630 u? (—) . {(26)
u, 6
LY, 12 5 g
7, = 0.253gpc, 8,1 (~— ) Pr=e 2n
]

In Fig. 2 we have a comparison of the experimental
data with formula (24). As we can see from the figure,
formula (24) shows considerably better convergence
with experiment than the Eckert and Jackson solution
(see Fig. 1).

In view of the absence of experimental data on tur-
bulent natural convection on vertical surfaces in the
region of Pr < 1 the experimental Fedynskii {10] data
on the average transfer of heat in liquid metals in the
case of turbulent natural convection in horizontal tubes
are plotted in rough approximation in Figs. 1 and 2.
As was to be expected, the Fedynskii experiments lie
somewhat higher than the theoretical solution, retain-
ing the fundamental relationship of heat transfer as
a function of the Pr number expressed by formula (24).

NOTATION

x and y are longitudinal and transverse coordinates;
Nuy is the local Nusselt number; Rayx = GryPr is the
local Rayleigh number; 7, and qw are the shear stress
and heat flux at the wall; u, isthe characteristic veloc-
ity for natural convection; § isthe boundary layer thick-
ness; 0 is the difference between the boundary layer
andfree stream; 8, is the temperature difference be-
tween the wall and the free stream; Ra is the mean
Rayleigh number.
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